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0. Introduction

Let R be an associative ring with unit. Bass’s lowest (the first) stable range condi-
tion [1] asserts the following: if @ and b in R satisfy Ra+ Rb= R, then there exists
t in R with a + tb left invertible (that is, R(a + tb) = R; Theorem 2.6 below says that
the requirement that a + rb be a unit is not really stronger). More exactly, this is the
‘left’ version of the condition, and there is a symmetric ‘right’ version; but the two
versions are in fact equivalent (see Theorem 2.1 below).

For brevity, we call a ring satisfying the condition a B-ring. The expression ‘stable
range (or rank) of R is I’, or ‘sr(R)<1’, or ‘a ring of stable range 1’ is used for
this in [19] and other places.

In this note known results are collected and a little information is added on B-
rings. We do not introduce here Bass’s higher stable range conditions (see !, 3, 9,
11, 13, 14, 16-20, 22]) which follow from the first one by [19, Theorem 1], or non-
associative B-rings (see [4, 5], where ‘ring of stable range 2’ means a ring satisfying
the first stable range condition). A nice geometric characterization of B-rings is
given in [21].

The note was inspired by (and called after) an old unpublished paper by I.
Kaplansky which contains Theorems 2.4, 2.6, 2.8, and 5.3, so I dedicate it to him.
I thank him for permition to publish his results and pointing out the paper [6]
(which contains Theorems 2.2, 2.7, and the equivalence of 5.3(a) with 5.3(d); a ring
has ‘substitution property’ in the sense of [6] if and only if it is a B-ring), R. Herman
for discussions of the stable range of C*-algebras, and a referee for suggestions.

1. Examples of B-rings
Example 1.1. Any field or a division ring is a B-ring. More generally, any Artinian

ring (in particular, any finite-dimensional algebra over a field) is a B-ring (see Bass
[1}; also it follows from Theorems 2.2 and 2.3 below).
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Example 1.2. The ring of all algebraic integers is a B-ring. More generally, if R is
a commutative ring with 1 such that the multiplicative group of R/Rb is torsion for
every non-zero b in R and the equation "+ ct"~ !+ d =0 has a solution ¢ in R for
any natural number »# and any ¢ and d in R, then R is a B-ring. Indeed, let such
a ring R be given, and let @ and b in R satisfy Ra+Rb=R. If b=0, then
R(a+tb)=Ra=Ra+ Rb=R for t=0. Otherwise, we find a natural number » and
an element z in R such that (- a)"—1=2zb. Since Ra""!'+Rb"~'=R, we can find
c and d in R such that —z=c(-a)" '+db""'. Pick t in R satisfying
t"+ct" '+d=0. Then

(@+th-a)"+bcla+th—a)"" '+ b"d=0,
hence

Ra+th)a(-a)"+(-a)" 'be+b"d=1+bz+(~-a)" 'c+b" 'd)=1,
so R(a+tb)=R.

Example 1.3 (Rubel [15]). The ring of all entire functions (of one complex variable)
is a B-ring.

Example 1.4 (see [10]). The disc algebra (consisting of functions analytic on the unit
disc and continuous on its closure) is a B-ring.

Example 1.5 (Estes—Ohm [3]). The Kronecker furction ring of any integrally closed
domain is a B-ring.

Example 1.6 (see [3]). A finitely generated commutative algebra R over a field is a
B-ring if and only if dim(R)=<0.

Example 1.7 (Vaserstein [19]). The ring of all continuous real (complex, quaterr.ion)
functions on a topological space X is a B-ring if and only if the dimension of X is
at most 0 (respectively, 1, 3). The same is true for dense subrings of continuous

functions.

The next sections provide more examples of B-rings.

2. Generai properties of B-rings
First we note that the notion of B-ring is in fact left-right symmetric:

Theorem 2.1 (see [19)). A ring R is a B-ring if and only if so is the opposite ring
R

‘Kp'
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Secondly, in studying B-rings we might assume them semi-simple, for it is a
triviality that if / is an ideal of a ring R contained in its Jacobson radical rad(R),
then R is a B-ring if and only if so is R/I:

Theorem 2.2. A ring R is a B-ring if and only if so is R/rad(R).

The next result is also trivial:

Theorem 2.3. If R is the direct product of a family {R,} of rings, then R is a B-
ring if and only if so is each R,,.

In the next theorem M,R denotes the ring of all n by n matrices over R.

Theorem 2.4 (see [19]). For any natural number n, a ring R is a B-ring if and onlv
if so is M,R.

Theorem 2.5 (see [1] or [19]). Any factor ring of a B-ring is a B-ring.

The generalizations to rings of higher stable range of the following 3 theorems
are false. Namely, there is a ring satisfying the second stable range condition con-
taining a left unit, which is not a right unit, and an idcapotent p such that pRp does
not satisfy any stable range condition.

Theorem 2.6. In a B-ring, one-sided inverses are two-sided.

Proof. Let ax=1. For b=1-xa we have Ra+ Rb=R. Hence there exists ¢ with
u=a+tb left invertible. Since bx =x—xax=x--x=0, 1 =ux so that u is also right
invertible. Thus, « is a unit, and so are x and a.

The following theorem generalizes Theorem 2.6.

Theorem 2.7. Let R be a B-ring, M and M’ (right) R-modules, and P a finiteiy
generated projective R-module. Then any isomorphism M& P ~M'@® P induces an
isomorphism M~M’.

Proof. Since P is a direct summand in R" for some #, it suffices to prove the
cancellation for the free R-modules R". Proceeding by induction on n, it is enough
to consider the case n= 1. The cancellation for such P= R is equivalent to the state-
ment that the automorphism group of the R-module M@ R acts transitively on the
unimodular elements v. Recall that v is unimodular if fu =1 for some R-module
morphism f:M@® R — R. Given such v and f, we can write v=(},) and f= (s, g) with
randsin R, min M, g:M— R, and fyv=sr+gm=1. Since Rr+ Rgm =R and R is
a B-ring, therc are ¢ and x in R such that x(r+1gm)=1. Then
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(e )6 5)r=(5)

(Here 1 is used also for id,,.) Thus, every unimodular v is taken to () by an
automorphism of M@R.

Theorem 2.8. If R is a B-ring and p*=peR, then pRp is also a B-ring.

Proof. Let @ and b be in pRp=R’' and R’'a+ R'b=R’. Consider a+1—p and b in
R. We have R'(1-p)=0, so R(a+1-p)+ RbDR’a+ R’b>3p. On the other hand,
(1 =pa=0=(1-p)b. So

Ra+1-p)y+Rba(1-pYa+1-p)+(1-p)b=1-p.

Thus, R(a+1-p)+Rbap+1-p=1.
Since R is a B-ring, there is f in R such that R(@+tb+1-p)=R. We have

(1= =pybj(1 + (1 —pb)=1=(i + (1 -p)b)(1 - (1 -pyb),
so 1 —(1—-pyub is a unit of R, hence
R=R@+ib+1-p)(1 -1 -p)tb)y=R(a+ptb+1-p).
Therefore R'(a+ ptpb)=R’.

Theoreins 2.1, 2.4, and 2.8 imply:

Corollary 2.9. Let R be a B-ring. Then the endomorphism ring of any finitely
generated right or left projective R-module is a B-ring.

Remark. To obtain Theorem 2.6 from Thecrem 2.7, note that xa=1 implies that
R=aR®(1 —ax)R with aR=axR ~ R, hence 1 —ax=0.

Remark. Corollary 2.9 shows that the notion of B-ring is Morita invariant.

3. Rings without units
Definition 3.1. For any associative ring R, let R, denote the ring of all pairs (r, 2),
where re R and ze Zi(the integers), with addition and multiplication given by
(r,2)=(,2)Y=(r+r',2+2%)
and
(r,z2)Xr, 2)=(r"+ 2zr' +rz’, 22°).

Then R, is an associative ring with unit. We will identify R with the two-sided
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ideal (R, 0) of R, and Z with the subring (0, Z) of R,. Note that R|/R=2Z.

Definition 3.2. A ring R is called a B,-ring (resp., B’-ring), if for any @ and & in
R, with a—1 in R (respectively, b—1in R) and Rja+ R\b =R, there is { in R, such
that R,(a+tb)=R|.

Theorem 3.3. Every B\-ring is a B'-ring.

Proof. Let R be a Bring, a,beR,b-1€R, and Ra+R,b=R,. Then
R(a+(1-a)b)+R,b=R,. Since a+ (1 —a)b— 1€ R and R is a B,-ring, there is  in
R, such that

Ri@a@+(1-a)b+tb)=R,,

hence Ri(¢+t'b)=R, for t'=1-a+teR,.

Theorem 3.4. A ring R with unit is a B-ring if and only if it is a B,-ring (or B’-
ring).

Proof. Let 1, be the identity element of R. Define the ring morphism F:R, — R by
F(r,z)=zlg+r. (By the way, the ring R, is the direct product of R=FR, and
Z(1-1p).)

Assume first that R is a B-ring, and let a,beR,,a—-1€R, and Rya+ R,b=R,.
Then (£) e R? is unimodular, so R(Fa + tFb)=R for some ¢ in R.

Then Ri(a+th)DR(a+thb)=R>3a+tb— 1. On the other hand, R (a+tby>a+tb.
Therefore

Ri(a+th)ysa+th—(a+tb—-1)=1.

Thus, R is a B;-ring and, by Theorem 3.3, a B’-ring.
Assume now that R is a B’-ring, and let @, be R and Ra+ Rb=R. We writ2
xa+yb=1x with x and y in R. Then

xa+(y—lg+1D)(b-1p+1)=1.
Since R is a B’-ring, there is ¢ in R such that
Ri(a+tb—15+1)=R,.
Applying F, we cbtain thai R(a+ (Ft)b)=R, where FteR.

Thus, R is a B-ring.

Lemma 3.5. Let a ring R be contained as a right ideal in a ring R’ with unit 1’ (for
example, R'=R)),a,beR’, and a—1"€R. Then the following 4 conditions are
equivalent:

(a) R'a+R'b=R’,

(b) R'a+R'b>1’,
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(c) Ra+ Rb=R,
(d) (1'+R)ya+Rb=1"+R.

Proof. it is clear that (a) and (b) are equivalent.
Let us prove that (b) implies (c). For an arbitrary ¢ in R, we have

Ra+ RbDOcR'a+cR'b>ac

(using (b) and RDRR'DcR’).
Let us prove that (c) implies (d). For an arbitrary ¢ in R we have

(I'+Rya+ Rb=a+Ra+Rb=a+R=1"+R

(using (¢) and a--1'€R).
Since R’ contains both R and 1’+ R, it is clear that (d) implies (b).

Theorem 3.6. Let R be an associative ring, n a natural number, and R’ as in Lemma
3.5. Then the following conditions are equivalent:

(@) R is a By-ring.

(b) For any a and b in R, such that a—1,beR and Rja+R,b=R, there is t in
R such that Ry(a-+tb)=R,.

(¢) R, is a By-ring.

(d) R/rad(R) is a B,-ring.

(e) M,R is a B,-ring.

(f) Every factor ring of R is a By-ring.

(g) Every right and every left ideal of R is a B,-ring.

(h) Under the conditions of Lemma 3.5 (when 3.5 (a—d) hold) there is t in R such
that R'(a+th)=R".

Proof. Assume first (a), and let us prove (h). Let @ and b be as in 3.5. By Lemma
3.5, xa+yb=1'for some xin 1’+ R and y in R. Set

a:=(@-1)+1eR+1CR,,
xp;:=x—-1"+1€R,, b,:=ybeR.

Then x,a, + b, =1, hence R,a,+ R,b,=R,, and a,— 1 € R. By (a), there are ¢, and s
in R, such that s(a; + £;b,)=1. Let F:R, = R’ be the ring homomorphism identical
on R and taking 1 to 1’. Then F(t,b,)=t,b; (since R,RCR and RR'CR), Fa,=a,
and (Fs)(a+ t,b;)=1’, hence R’(a+ t,yb)=R’. Since t: =t,ye R;RCR, we are done.

Let us prove now that (h) implies (b). Let @ and b be as in (b) (in fact, instead
of beR we are going to use the weaker condition beR;). By Lemma 3.5,
xa+yb=1 with xel+R and yeR. Set

a:=(@-1)+1" and x:=(x-1)+1'eR’'+1".

Then x'a’+yb=1" and ybeR. By (h), there are reR and se R’ such that
sta’+tyb)y=1". Set
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s;i=("—a’'-1yb)s+ 1€ RR"+ 1 CR,.

Then s (a+tyb)=1, so R|(a+tyb)=R,.

Now let us show that (b) implies (a). Let @ and b be as in Definition 3.2 of
B\-rings. By Lemma 3.5, xa+yb=1 for some x in 1+K and y in R. By (b),
Ri(a+1t'yb)=R, for some t"in R, hence

Rl(a+tb)=R] f0r I=t’y’ERCR|.

Thus, the conditions (a) and (b) are equivalent. The condition (b) means that
sr(R)=<1 in the sense of [19]. It is contained in results of [19] that (b) is equivalent
with (c), (d), (e), (f), and {g) with two-sided ideals. So it leaves to us only to prove
that any left ideal J of a B,-ring R is a B,-ring.

Let a, b, x,yeJ,,a—1€J, and xa+yb=1. Set

x'=1+(l-axel+J and y'=({1-a)yel.

Then x’a+y’b=1. Since R is a B-ring, s(a+t'y'b)=1 for some s and ¢’ in R,.
Since t=t'y’eJ,a+th—1€J. Since s(a+tb)=1,5s-1=J, so seJ,.

The following theorem shows, in particular, that not every B’-ring is a B,-ring.

Theorem 3.7. Let R be an associative ring and X an infinite set. Denote by MyR
the ring of all matrices (a; j); jc x with only finitely many non-zero entries in each
matrix. Then:

(@) MyR is a B,-ring if and only if so is R.

(b) MxR is always a B'-ring.

Proof. (a) If R is a B,-ring, so is M, R for any n (see Theorem 3.4). Since every
finite subset of MyR is contained in a subring isomorphic to M,R for some n, it
follows that MR is a B;-ring.

Assume now that MyR is a B-ring. Pick x in X. Given any a and & in R, with
a—1€R and Ria+ Rb=R,, we define matrices a’=(a; ;) and b'=(b; ) in (M\R),
by

’

a, . =a, aj ;=1 fori#x, and a; ;=0 fori#j
bi.=b and b;=0 for (i,j)#(xx).

Then (MxR),a’+(MxR)b’=(MxR),, so there is r=(¢; ;) in (MyR), such that
(MXR)](a'+t'b')=(1\/1{fo)l.

Writing matrices in  block form according to the decomposition
X={x}U{X-x]}, we have:

v, fattb 0
a+tb—\ 1>,
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where (1/v) is the x-th column of ¢’.

Since the matrix (| 9) is invertible, it follows that (“ " 9) is left invertible, hence
a+ th is left invertible in R,. (We use 1 to denote different identity matrices.) Thus,
R is 2 By-ring.

(b) Let a, b, x, ¥ be in (MyxR),, b— 1€ MxR, and xa+ yb=1. Find a finite subset
S of X such that for (c; ;) equal to any of the matrices a, b, ¢, d we have: ¢; ;=0
when i or j is outside of S and i#j, and c; ;=c; ; when both / and j are outside of
S (we write elements of ZC(MyR), as scalar matrices). Writing

a0 b’ O
a-(o z:) and b—(o l,)
according to X=SU(X-S), we obtain that xea'+y'b’=1, where
a,b’,x,y e(MgR), and b- 1€ MgR. Pick disjoint $" and §” in XS of the same

finite cardinality as S. We will write now matrices in (MyR), in block form as 4 by
4 matrices according to

X=SUS'US"UX-5-58"-8").

Set
[’0 0 1 0
1 1-2 0 0
t= 0 _yr _xt_z 0 E(MXR)I‘
0 O 0 1-z2
Then
a 0 1 0
b1 0 0
a+th= 0 -y —x'0
0O 0 0 1

is invertible, because the finite matrix

(a0 11 (1 0 o0)(10a (001‘
b 1 o t=l0 1 ollote|lo1o
1

o -y —x) -x -y 001100,

is invertible.

Example 3.8. If we take a ring R with one-sided units which are not two-sided, then
MyR will be a B’-ring with:

(a) one-sided units in (MyR), which are not two-sided;

(b) idempotents p such that pBp is not a B-ring;

(c) left and right ideals which are not B’-rings.

In particular, one cannot replace B, by B’ in the foliowing result.
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Theorem 3.9. If R is a B,-ring, then every one-sided unit in R, is two-sided, and
PRp is a B-ring for any idempotent p =p® in R.

Proof repeats the proofs of Theorems 2.6 and 2.8 above. We leave it to the
reader, as well as proving the following result.

Theorem 3.10. Let R be an ascociative ring and n a natural number. Then the
Sfollowing statements are equivalent:

(@) R is a B'-ring.

(b) For any a and b in R, such that a,b—1€R and Rja+ R \b=R, there is t in
R, such that R\(a+ tb)=R,.

(¢) R, is a B'-ring.

(d) R/rad(R) is a B'-ring.

(e) M,R is a B'-ring.

(g) For every ring R’ with unit 1’ containing R as a two-sided ideal and any
a,beR’' withb—1'eR and R'a+ R'b=R' there is te R’ such that R'(a+tb)=R'.

Remark. One-sided ideals of rings satisfying the second stable range condition (see
[1] need not satisfy any stable range condition. For example, in the conditions of

L 17 hath AS A ~ond i
1 neorem 3.7, ootn JVIXI\ ana UVJXI\” cuway'S Satnly the second stable rangc condi-

tion, and they have one-sided ideals J such that J/rad(J) is isomorphic to R (which
could be of infinite stable range).

4. C*-algebras

For any C*-algebra R, let R+ C denote the C*-algebra with unit obtained from
R hy adjoining an identity element (so (R + C)/R =C, the complex numbers). The
foliowing result is evident.

Theorem 4.1. A C*-algebra R is a B,-ring if and only if R+ C is a B-ring.

Theorem 4.2. Let R be a C*-algebra with uni:. Then the following conditions are
equivalent:

(a) R is a B-ring.

(b) For any a and b in R with Ra+ Rb=R there is an unitery t=1*" Uin R such
that R(a+tb)=R.

(c) For any a and b in R with Ra+ Rb=R and any positive real number ¢ rhere
is t in R such that R(a+1tb)=R and |t|<e.

(d) The invertible elements are dense in K.

(¢) R®K is a By-ring, where K is the algebra of all compact operators on a
separable infinite-dimensional complex Hilbert space.
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Proof. By [9], (a) implies (d) (the commutative case was done in [19]). This together
with results mentioned and obtained in Rieffel [13] gives the theorem.

In the commutative case (which is covered by Example 1.7) one obtains a more
compiete result:

Theorem 4.3. A commutative C*-algebra R is a B,-ring, if and only if the space of
maximal ideals of R+ C has dimension <1.

Exzmple 4.4 (sce [13]). Any AF C*-algebra is a B,-ring.

Example 4.5 (see [13]). If G is a compact group, then its C*-algebra C¥XG) is a B-
ring.

Example 4.6 (Handelman [8]). Suppose R is a C*-algebra such that for every a in
R there is a unitary u with au positive. Then R is a B-ring.

Example 4.7 (Riedel [12]). Some (perhaps, all the) irrational rotation algebras are
B-ring.

Example 4.8 (see [2]). Taking R=C in Theorem 4.2, we see that R®K=K is a
B;-ring. Note that K is a two-sided ideal in the ring of bounded operators which do
not satisfy any stable range condition.

S. Von Neumann regular rings

Definitier: 5.1. An associative ring R with 1 is called von Neumann regular, if for
any a in R there is x in R such that axa=a.

Definition 5.2. Two idempotents e and f in a ring R are equivalent if there are x
in eRf and y in fRe with xy=e and yx=/.

Theorem 5.3. For any von Neumann reguiar ring R the following conditions are
equivalent:

(a) R is a B-rirg.

(b) For any a in R there is a unit u in R such that aua=a.

(c) The conclusion of Theorem 2.7 holds.

(d) The conclusion of Theorem 2.7 holds when M@ P=R.

(€) If e and f are equivalent idempotents in R, then so are 1 —e and 1 —f.

Proof. Theorem 4.12 of Goodearl [7] says that (a) and (b) are equivaler... By
Theorem 2.7, (a) implies (c). Evidently, (c) implies (d). Let us show that () implies
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(e), and that (e) implies (b).

Assume first (d), and let e and f be as in (e). Let x and y be as in Definition 5.2.
Then r~ yr and r’~ xr’ give mutually inverse R-module homomorphisms eR — fR
and fR— eR, so eR~fR. Using again that e?=e and f>=f, we see that R=eR®@
(1-e)R=/R®(1-f)R. By (d), (1-e)R~(1-f)R.

Pick mutually inverse isomorphisms (1—-e)R— (1 —f)R and (1 -f)R— (1 —¢)R,
and extend them by the zero mappings (on the complementary summands) to en-
domorphisms r—~sr and rw~tr respectively of the R-module R. Then
se=fs=0=tf=etandts(1 -e)=1-e,st(1-f)=1~f, hencets=1-¢,st=1-fand
t=(1-e)y(1-f),s=(1-fs(1-e). Thus, 1 —e and 1 —f are equivalent.

Assume now (€). We want to prove (b). Let a€ R. Since R is regular, axa = a for
some x in R. Then ax and xe are idempotents, so by (e) there are s in
(1 —ax)R(1 -—-xa) and ¢ in (1 —xa)R(1 — ax) such that st=1-ax and ts=1 - xa.

Then (a+s)(xax+*)=1=(xax+t)a+s), so u=xax+t is a unit. Moreover,
aua=axaxa+ata=a+0=a. ,

Thus, (e) implies (b), and the theorem is proved.

Example 5.4. If a (von Neumann) regular ring R with 1 is commutative or, more
generally, abelian (that is, every idempotent in R is central), then R is a B-ring (see
[7, Corollary 4.5]). Here is a proof of 5.3(b) for any abtelian regular R with 1. Let
a be in R. By the regularity, axa =a for some x in R. Then xaxa = xa is an idempo-
tent. Since R is abelian, xa commutes with both @ and x. Set u: =xax+ 1 — xa. Then
aua=a and

ulxax+1—-xa)=(xax+1-xa)u=1,

SO u is a unit.

But [11] there are (non-abelian) regular rings with 1 which are not B-rings (that
is, which do not satisfy the first stable range condition; some of them satisfy the
second stable range condition which was mentioned but not introduced in this note).

Remarks added in proof

(a) Example 1.4 is mentioned in a paper by G. Corach and A.R. Larotonda in
this journal, Vol. 32, No. 3 (1984), pp. 289-300. A more general result was obtained
in ‘‘Stable range in holomorphic function algebras’’ by G. Corach and F.D. Suérez.

(b) For more information about von Neumann regular B-rings (known as unit-
regular rings) see ‘‘Reviews in Ring Theory’’ by Small.
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