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0. Introduction 

Let R be an associative ring with unit. Bass’s lowest (the first) stable range condi- 

tion [l] asserts the following: if a and b in R satisfy Ra + R& = R, then there exists 

C in R with a + tb left invertible (that is, R(a + tb) = R; Theorem 2.6 below says that 

the requirement that a + tb be a unit is not really stronger). More exactly, this is the 
‘left’ version of the condition, and there is a symmetric ‘right’ version; but the two 

versions are in fact equivalent (see Theorem 2.1 below). 

For brevity, we call a ring satisfying the condition a B-ring. The expression ‘stable 

range (or rank) of R is l’, or ‘w(R) s I’, or ‘a ring of stable range 1’ is used for 

this in [19] and other places. 

In this note known results are collected and a little information is added on B- 

rings. We do not introduce here Bass’s higher stable range conditions (see [I, 3, 9, 
11, 13, 14, 16-20, 221) which follow from the first one by [19, Theorem 11, or non- 

associative B-rings (see [4, 51, where ‘ring of stable range 2’ means a ring satisfying 

the first stable range condition). A nice geometric characterization of B-rings is 

given in [21]. 

The note was inspired by (and called after) an old unpublished paper by I. 
Kaplansky which contains Theorems 2.4, 2.6, 2.8, and 5.3, so I dedicate it to him. 

I thank him for permition to publish his results and pointing out the paper [6] 

(which contains Theorems 2.2, 2.7, and the equivalence of 5.3(a) with 5.3(d); a ring 

has ‘substitution property’ in the sense of [6] if and only if it is a B-ring), R. Herman 

for discussions of the stable range of P-algebras, and a referee for suggestions. 

1. xamples of B-rings 

xample 1.1. Any field or a division ring is a B-ring. More generally, any .Artinian 

ring (in particular, any finite-dimensional algebra over a field) is a B-ring (see Bass 

[l]; also it follows from Theorems 2.2 and 2.3 below). 
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Example 1.2. The ring of all algebraic integers is a B-ring. More generally, if R is 
a commutative ring with 1 such that the multiplicative group of R/Rb is torsion for 
every non-zero b in R and the equation t” + ct “-‘+d=O has a solution t in R for 
any natural number n and any c and d in R, then R is a B-ring. Indeed, let such 
a ring R be given, and let CI and b in R satisfy Ra+ Rb = R. If b = 0, then 
R(a+ tb) = Ra = Ra+ Rb = R for t= 0. Otherwise, we find a natural number n and 
an element z in R such that ( -- a)” - 1 = zb. Since Ran- * + Rb”- ’ = R, we can find 
c and d in fi! such that - z = c( - a)” - ’ + dbpr - ‘. Pick t in R satisfying 

+d==O, Then 

(~+~b-~u)n+bc(a-ttb-a)n-l+bnd=O, 

hence 

R~cr~+tb)~(-a)n+(-a)n~‘bc+bnd=1+b(z+(-a)n~’c+bn~‘d)=1, 

so R(a -P” tbj = R. 

Example 1.3 (Rubel [HI). The ring of all entire functions (of one complex variable) 
is a B-ring. 

xaznple 1.4 (see [lo]). The disc algebra (consisting of functions analytic on the ,.mit 
disc and continuous on its closure) is a B-ring. 

Example 1.5 @tes-Ohm [3]). The Kronecker function ring of any integrally closed 
domain is a B-ring. 

Exarmple I.6 (see [3]). A finitely generated commutative algebra R over a field is a 
B-ring if and only if dim(R) 

Example 1.7 (Vaserstein [ 191). The ring of all continuous real (complex, quaterrion) 
functions on a topological space X is a B-ring if and only if the dimension of X is 
a% most 0 (respectively, 1, 3). The same is true for dense subrings of continllous 
functions. 

The next sections provide more examples of B-rings. 

2. General properties of B-rings 

First we note that the notion of B-ring is in fact left-right symmetric: 

(see [ i 91). A ring R is a B-ring if and only if so is the opposite ring 
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Secondly, in studying B-rings we might assume them semi-simple, for it is a 

triviality that if I is an ideal of a ring R contained in its Jacobson radical rad(R), 

then R is a B-ring if and only if so is R/I: 

Theorem 2.2. A ring R is a B-ring if and only if so is R/t-ad(R). 

The next result is also trivial: 

Theorem 2.3. If R is the direct product of a fami/<v (R,) of* rings, then R is a B- 
ring lf and only I” so is each R,. 

In the next theorem M,,R denotes the ring of all*/? by n matrices over R. 

Theorem 2.4 (see [ 191). For any natural number II, a ring R is a B-ring if and orllv 
if so is M,,R. 

Theorem 2.5 (see [l] or [ 191). Any factor ring of a B-ring is a B-ring. 

The generalizations to rings of higher stable range of the following 3 theorems 

are false. Namely, there is a ring satisfying the second stable range condition con- 

taining a left unit, which is not a right unit, and an idc-(ipotent p such, that pRp does 

not satisfy any stable range condition. 

Theorem 2.6. In a B-ring, one-sided inverses are tu*o-sided. 

Proof. Let ax = 1. For b = 1 - xa we have Ra + Rb = R. HelIce there exists f with 

u = a + tb left invertible. Since bx = x- xax=x -- x = 0, E = ux so that II is also right 

invertible. Thus, u is a unit, and so are x and u”. 

The following theorem generalizes Theorem 2.6. 

Theorem 2.7. Let R be a B-ring, M and M’ (right) R-modldes, and P a firlit&* 
generated projective R-module. Then any isomorphism M@ P - #I’@ P i/ldlu.s an 
isomorphism M - Mt. 

Proof. Since P is a direct summand in RN for some n, it suffices to prove the 

cancellation for the free R-modu!es R”. Proceeding by induction on 11, it is enough 

to consider the case n = 1. The cancellation for such P= R is equivalent to the state- 

ment that the automorphism group of the R-module M@ R acts transitively on the 

unimodular elements U. Recall that u is unimodular if ji, = 1 for some R-module 

morphism f :M@ R --+ R. Given such v and f, we can write u := (r,,) and .f’= (s, g) with 

r and s in R, m in g:,‘La -+ R, and fv = sr + gm = 1. Since Rr + Rgm = R and R i.*; 

a B-ring, there are I and x in R such that x(r + tgm) = 1. The11 
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(Here 1 is used also for id,,+) Thus, every unimodular u is taken to (A) by an 
automorphism of lcf@R. 

Theorem 2.8, If R is a B-ring and p2 = p E R, then pRp is also a B-ring. 

ProoO. Let 0 and b be in pRp = R’ and R’a + R’b = R’. Consider a+ 1 -p and b in 
R. We have R’(l -p)=O, so R(a+ 1 -p)+RbIR’a+R’b3p. On the other hand, 
(1 --&~=0=(1 -p)b. So 

R(Iu+ 1 -p)+Rb3(1 -p)(a+ 1 -p)+(l -p)b= 1 --p. 

Thus, R(ar+ 1 -p)-t Rbsp+ 1 -p= 1. 
Since R i!i a B-ring, there is t in R such that R(a + tb + 1 --p) = R. We have 

41 -(l -p)tbj(l +(I -p)tb)= 1 =(: +(l -p)tb)(l -(l -p)tb), 

SCI 1 -_ (1 -_ p)tb is a unit of R, hence 

R=R(a+tb+l-p)(l-(l-p)tb)=R(a+ptb+l-p). 

Therefore R ‘(a + ptpb) = R ‘. 

Theoreins 2.1, 2.4, and 2.8 imlply: 

Corollary 2.9. Let R iw u B-ring. Then the endomorphism ring of any finitely 
erierated right or left ,wojective R-module is a B-ring. 

Remark. To obtain Theorem 2.6 from Theorem 2.7, note that xa = 1 implies that 
(1 - ax)R with aR = axR - R, hence 1 - ax= 0. 

emark. Corollary 2.9 shows that the notion of B-ring is Morita invariant. 

ings vdhout units 

nition 3.1. For any associative ring R, let RI denote the ring of all pairs (r, z), 
here rci: R and ZE Z!the integers), with addition and multiplication given by 

Ir,z)=(T’,t’)=(r+r’,z+z’) 

fr, z)(r’, z’) = (rr i- zr’ + rz’, zz’). 

1 is an associative ring with unit. We will identify R with the two-sided 
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ideal (R, 0) of RI and 2 with the subring (0,Z) of R,. Note that R,/R =z. 

kfinition 3.2. A ring R is called a B,-ring (resp., B’-ring), if for any a and b in 
RI with a - 1 in R (respectively, b- 1 in R) and R,a+ R,b = R, there is i’ in R, such 
that R,(a+ tb) = RI. 

Theorem 3.3. Every B,-ring is a B’-ring. 

Proof. Let R be a B,-ring, a,bcR,,b-IER, and R,a+H,b=R,. Then 
&(a+(1 -a)b)+Rlb=RI. Since a+(1 -a)b- 1 ER and R is a B,-ring, there is t in 
R, such that 

R,(a+(l -a)b+ tb)= R,, 

hence R&a-t-t’b)=R1 for t’=l --a+tER!. 

Theorem 3.4. A ring R with unit is a B-ring if and only if it is a B,-ring (or B’- 
ring). 

Proof. Let lR be the identity element of R. Define the ring morphism F:R, -+ R by 
F(r, z) =zl, + r. (By the way, the ring R1 is the direct product of R = FRr and 

Z(1 - lR)*) 
Assume first that R is a B-ring, and let a, be RI, a - 1 E R, and Rla+ Rib = RI. 

Then (g) E R’ is unimodular, so R(Fa + tFb) = R for some t in R. 
Then Rl(a+tb)>R(a+tb)=R3a+tb- 1. On theother hand, R,(a+tb)3a+tb. 

Therefore 

R,(a-t- tb)3a+ tb-(a-t tb- l)= 1. 

Thus, R is a Bt-ring and, by Theorem 3.3, a B’-ring. 
Assume now that R is a B’-ring, and let a, b E R and Ra + Rb = R. We wri:z 

xa+yb= lR with x and y in R. Then 

xa+(y- lR+ l)(b- 1,-t I)= 1. 

Since R is a E-ring, there is f in R such that 

R,(a+ t(b- I,+ I))=&. 

Applying F, we Gbtain 
Thus, R is a B-ring. 

that R(a + (Ft)b) = R, where Ft E R. 

Lemma 3.5. Let a ring R be contained as a right ideal in a ring R’ with unit 1’ (for 
example, R’= R,), a, b E R’, and a - 1’ E R. Then the following 4 conditions are 
equivalent: 

(a) R’a+ R’t,= R’, 
(b) R/a-+-R’bzC’, 
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(c) Ra+ Rb= R, 
(d) (I’+ R)a+ Rb= 19 R. 

Proof. I(t is clear that (a) and (b) are equivalent. 
Let us prove that (b) implies (c). For an arbitrary c in R, we have 

Ra+-RbXR’a+-cR’b3c 

(using (b) and R:>RR’xR’). 
Let us prove that (c) implies (td). For an arbitrary c in R we have 

(I’+R)a+Rb=a+Ra+Rb=a+R=l’+R 

(using (c) and a -- 1’ E R). 
ince R’ contains both R and l’+ R, it is clear that (d) implies (b). 

‘N~rern 3~6, Let R be an associahe ring, n a natural number, and R’ as in Lemma 
3.5. Then t&e foll’o wing conditiolns are equivalent: 

(a) R is a B+ng. 
(b) For aray a and b in R, such that a- 1, beR and R,a+R,b=R, there is t in 

R such that R&a + tb) = RI. 
(c) R,, is a &ring. 
(d) R/rrad(R) is a &ring. 
(e) M,,R is a B,-ring. 
( f) Every *factor ring of R is a B, -ring. 
(g) Every right and every left ideal of R is a &ring. 
(h) Under the conditions of Lemma 3.5 (when 3.5 (a-d) hold) there is t in R such 

that R’(a + tb) = R’. 

Proof. Assume first (a), and Iet us prove (h). Let a and b be as in 3.5. By Lemma 
3.5, xa+yb= 1’ for some x in l’+ R and y in R. Set 

(a,:=(a-l’)+kR+lCRl, 

xl: =x- l’+ 1 ERR, b ,:=ybER. 

Then x!al + bl = 1, hence Rlal + Rlbl = RI, and al - 1 E R. By (a), there are tl and s 
in RI such th#at s(al + tIb,) = 1. Let F: RI --) R’ be the ring homomorphism identical 
on R and taking 1 to 1’. Then F(t,b,) = t,bl (since R,RCR and RR’C R), Fal =a, 
and (Fs)(a + tIbl) = 1 ‘, hence R’(a -t- t,yb) = R’. Since t: = t,y E R,R c R, we are done. 

Let us prove now that (h) implies (b). Let a and b be as in (b) (in fact, instead 
of’ b E R we are going to use the weaker condition b E R,). By Lemma 3.5, 

yb==l withx&+RandyER. Set 

cd: = (a- lj-t- 1’ and x’:=(x- I)+ l%R’+ 1’. 

= f ‘ and yb E R. By (h), there are t E R and SE R’ such that 
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s,:=(l’-a’-zyb)s+kRR’+lcRi. 

Then s,(a+tyb)= 1, so R,(a+tyb)=R1. 
Now let us show that (b) implies (a). Let LI and b be as in Definition 3.2 of 

Bt-rings. By Lemma 3.5, xa+ yb= 1 for some x in 1 + R and y in R. By (b), 

R,(at t’yb)= RI for some t’ in R, hence 

R,(a+tb)=R, for t=t’y’ERCRI. 

Thus, the conditions (a) and (b) are equivalent. The condition (b) means that 
sr(R) 5 1 in the sense of [ 191. It is contained in results of [ 191 that (b) is equivalent 

with (c), (d), (e), (f), and <g) with two-sided ideals. So it leaves to us only to prove 

that any left ideal J of a Bi-ring R is a B,-ring. 

Let Q, b,x, y~Ji, a- 1 EJ, and xa+yb= 1. Set 

x’= 1 +(l -a)_~ 1 +J and y’=(l -@-YE J. 

Then x’a+ y’b= 1. Since R is a B,-ring, s(at t’y’b) = 1 for some s and t’ in R,. 
Since t=t’y’~.I, a+&-- 1 EJ. Since s(a+tb)= l,s- 1 rJ, so stzJ,. 

The following theorem shows, in particular, that not every E-ring is a &-ring. 

Theorem 3.7. Let R be an associative ring and X an infinite set. Denote b.v MSVR 
the ring Of all matrices (ai, j)i, je x with oniy finitely many non-zero entries in each 
matrix. Then: 

(a) MxR is a B,-ring if and on/y if so is R. 
(b) MxR is always a B’-ring. 

Proof. (a) If R is a B,-ring, so is M,R for any n (see Theorem 3.4). Since every 

finite subset of MxR is contained in a subring isomorphic to M,,R for some n, it 

follows that M,,R is a et-ring. 

Assume now that MxR is a B1-ring. Pick x in X. Given any a and !J in R1 with 

a- 1 E R and R,a+ Rib= RI, we define matrices a’z(0’l.j) and b’=(6,:,) in (MIR)l 

bY 

a; .Y = a, U’:i= 1 for i#x, and a,:;=0 for i#j; 

bl., .Y = b and b’tj=O for (i,j)#(s,s). 

Then ( MxR),a’+ ( MxR)b’ = ( M,YR)I, so there is t = (t,,,) in ( iVJ?)I SjuCh that 

(M_,R),(a’+ t’b’) = ( iW,yR)I. 
Writing matrices in block form according to the decomposition 

X={x}U{X-xj, we have: 
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where (Z/V) is the x-th column of t ‘. 

Since the matrix (1 y) is invertible, it follows that (‘itb y) is left invertible, hence 
(p c tb is left invertible in Rt . (We use 1 to denote different identity matrices.) Thus, 
R is a &ring. 

(b) Let a, b, x, _v be in (A+&&, b - 1 E: MJ?, and xu + yb = 1. Find a finite subset 
S of X such that for (Q equal to any of the matrices a, b, c, d we have: Ci,j = 0 
when i or j is outside of S and if: j, and Ci, i = cj,j when both i and j are outside of 
S (we write elements of ZC( MJ?), as scalar matrices). Writing 

and b= 

according to X=SU(X-S), we obtain that xEa’+y’b’= 1, where 
a’, b’, x’,y’c( MsR), and b- 1 EM& Pick disjoint S’ and S” in X-S of the same 
finite cardin 3Jlity as S. We will write now matrices in (A&& in block form as 4 by 
4 matrices according to 

,J&-SUS’ijSflU(X_ S_ S’_- Sfl). 

Set 

t = 

Then 

‘0 0 - 1 0 
11-z 0 0 
0 -y’ -xx’--2 0 

c 0 

a+tb= 

is invertible, 

is invertible. 

0 0 I-ZJ 

a’ 0 I 0 

(0 o o IJ 

because the finite matrix 
r 
a’0 1 

-I 
f 1 0 o- 

b’l O.= 0 10 

J I _o -yl -xx’ --x’ -y’ 1 

xample 3.8. If we t;tke a ring H with one-sided units which are not two-sided, then 
MJ? will be a B/-ring with: 

(a) one-sided units in (&I?), which are not two-sided; 
ts p such that pBp is n’ot a B-ring; 

t idears which are rmt B’-rings. 

In particuilar, one cannot replace B, by B’ in the following result. 
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Theorem 3.9. If R is a B,-ring, then every one-sided unit in R, is two-sided, and 
pRp is a B-ring for any idempotent p =p2 in R. 

Proof repeats the proofs of Theorems 2.6 and 2.8 above. We leave it to the 
reader, as well as proving the following result. 

Theorem 3.10. Let R be an associative ring and n a natural number. Then the 
following statements are equivalent: 

(a) R is a B’-ring. 
(b) Foranyaand b in RI such that a,b-1ER and R,a+-R,b=R, there is t in 

R, such that R,(a+ tb)= RI. 
(c) R, is a B '-ring. 

(d) R/rad(R) is a B’-ring. 
(e) M,,R is a B’-ring. 
(g) For every ring R’ with unit 1’ containing R as a two-sided ideal and any 

a,bER’withb-1’ERandR’a+R’b=RfthereistER’suchthatR’(a+tb)=R’. 

Remark. One-sided ideals of rings satisfying the second stable range condition (see 
[l]) need not satisfy any stable range condition. For example, in the conditions of 
Theorem 3.7, both MxR and (M,R), always satisfy the second stable range condi- 
tion, and they have one-sided ideals J such that J/rad(J) is isomorphic to R (which 
could be of infinite stable range). 

4. C*-algebras 

For any C*-algebra R, let R + C denote the C*-algebra with unit obtained from 
R hy adjoining an identity element (so (R + C)/R = C, the complex numbers). The 
foliowing result is evident. 

Theorem 4.1. A P-algebra R is a B,-ring if and only if R + C is a B-ring. 

Theorem 4.2. Let R be a P-algebra with uni ). Then the following conditions are 

equivalent: 
(a) R is a B-ring. 
(b) For any a and b in R with Ra + Rb = R there is an unitcrv t = t * - 1 rn Bi s~h _ 

that R(a -I- tb) = R. 
(c) For any a and b in R with Ra + lib = R and any positive real ntrarzber t^ rhere 

is t in R such that R(a -I- tb) = R and iit iI< E. 

(d) The invertible elements are dense in R. 
(e) R@K is a B,-ring, where K is the algebra of all compact operators on Q 

sepurable infinire-dimensional compiex Hilbert space. 
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Proof. By 191, (a) implies (d) (the commutative case was done in [19]). This together 
with results mentio’aed and obtained in Rieffel [13] gives the theorem. 

In the commutative case (which is covered by Example 1.7) one obtains a more 
complete result: 

Theorem 4.3, A commutative Ctalgebra R is a B,-ring, if and only if the space of 
maximail ideals of R + C has dimension 5 1. 

Exz~nple 4.4 (see [ 131). Any AF C*-algebra is a &ring. 

Example 4.5 (see [ 131). If G is a compact group, then its C*-algebra C*(G) is a B- 
ring. 

Example 4.6 (Handelman [S]). Suppose R is a C*-algebra such that for every a in 
R there is a unitary u with au positive. Then R is a B-ring. 

Example 4.7 (Riedel [ 121). Some (perhaps, all the) irrational rotation algebras are 
B-ring. 

Example 4.8 (see [2]). Taking R = C in Theorem 4.2, we see that R@K=K is a 
B,-ring. Note that K is a two-sided ideal in the ring of bounded operators which do 
not satisfy a.ny stable range condition. 

5. Van heumann regular rings 

Definiticwl 5.1. An associative ring R with 1 is called von Neumann regular, if for 
any a in R there is x in R such that axa=a. 

Definition 5.2. T’NO idempotents e and f in a ring R are equivalent if there are x 
in eRf and y in j Qe with xy= e and yx=f. 

Theorem 5.X For= any von Neumann regular ring R the following conditions are 
equivalent: 

(a) R is a B-rkg. 
(b) For any a 1% R there is a unit u in R such that aua =a. 
(c) The conclusion of Theorem 2.7 holds. 

The iconclus:ion of Theorem 2.7 holds whlen MQ P = R. 
f are equivalent idempotents in R, then so are 1 -e and 1 -f. 

. ~~l~~~e~ 4.12 of Coodearl [7] says ah/at (a) <and (b) are equivale!lL. By 
eorem 22, (a) implies (c). Evidently, (c) implies (d). Let us show that (Gi implies 
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(e), and that (e) implies (b). 
Assume first (d), and let e and f be as in (e). Let x and y be as in Definition 5.2. 

Then r w yr and r’ w xr’ give mutually inverse R-module homomorphisms eR -+ fR 

and fR + eR, so eR-fR. Using again that e*=e and f*=f, we see that R = e.x(@ 

(1 -e)R=fR@(l -f)R. By (d), (1 -e)R-(1 -f)R. 
Pick mutually inverse isomorphisms (1 - e)R -+ (1 -f )R and (1 -f )R --+ (I - e)R, 

and extend them by the zero mappings (on the complementary summands) to en- 
domorphisms r c-) sr and r c-) tr respectively of the R-module R. Then 
se=fs=O=tf=et and ts(l -e)= 1 -e, st(1 -f)= 1 -J, hence ts= 1 -e, st= 1 -f and 
t==(l -e)t(l -f), s=(l -fs(l -e). Thus, 1 -e and 1 -fare equivalent. 

Assume now (e). We want to prove (b). Let aE R. Since R is regular, axa = a for 

some x in R. Then ax and xa are idempotents, so by (e) there are s in 

(1 -ax)R(l --~a) and t in (1 -xa)R(l -ax) such that st= 1 -ax and ts= 1 -.X-O. 
Then (a + s)(xax+ ‘) = 1 = (xax+ t)(a + s), so u = xax + t is a unit. Moreover, 

aua=axaxa+ata=a+O=a. 
Thus, (e) implies (b), and the theorem is proved. 

Example 5.4. If a (von Neumann) regular ring R with 1 is commutative or, more 
generally, abelian (that is, every idempotent in R is central), then R is a B-ring (see 
[7, Corollary 4.51). Here is a proof of 5.3(b) for any abelian regular R with 1. Let 
a be in R. By the regularity, axa = a for some x in R. Then xaxa = xa is an idempo- 
tent. Since R is abelian, xa commutes with both a and X. Set u: = xax+ 1 - xa. Then 
aua=a and 

u(xax+ 1 -xa)=(xax+ 1 -xa)u= 1, 

so u is a unit. 
But [l l] there are (non-abelian) regular rings with 1 which are not B-rings (that 

is, which do not satisfy the first stable range condition; some of them satisfy the 
second stable range condition which was mentioned but not introduced in this note), 

Remarks added in proof 

(a) Example 1.4 is mentioned in a paper by G. Corach and A.R. Larotonda in 
this journal, Vol. 32, No. 3 (1984) pp. 289-300. A more general result was obtained 
in “Stable range in holomorphic function algebras” by G. Corach and F.D. Su8rez. 

(b) For more information about von Neumann regular B-rings (known as unit- 
regular rings) see “Reviews in Ring Theory” by Small. 
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13) D. Estes and J. Ohm, Stable range in comm!lttative rings, .J. Algebra 7 (1967) 343-362. 

14) J.R. Faulkner, Stable range and linear groups for alternative rings, Geomet. Dedicate 14 ((1983) 

171-188. 
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